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Convergent calculation of the asymptotic dimension of diffusion limited aggregates:
Scaling and renormalization of small clusters
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Diffusion limited aggregation~DLA ! is a model of fractal growth that had attained a paradigmatic status due
to its simplicity and its underlying role for a variety of pattern forming processes. We present a convergent
calculation of the fractal dimensionD of DLA based on a renormalization scheme for the first Laurent
coefficient of the conformal map from the unit circle to the expanding boundary of the fractal cluster. The
theory is applicable from very small~2–3 particles! to asymptotically large (n→`) clusters. The computed
dimension isD51.71360.003.

PACS number~s!: 61.43.Hv
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The model of diffusion limited aggregation was presen
in 1981 by Witten and Sander@1# as a computer algorithm
The process begins with fixing one particle at the cente
coordinates ind-dimensions, and follows the creation of
cluster by releasing random walkers from infinity, allowin
them to walk around until they hit any particle belonging
the cluster. The growing cluster appears to be a random f
tal. The model has attracted enormous attention as an
ample for the spontaneous creation of fractal objects in
ture, and also as a paradigm for a family of relat
‘‘harmonic’’ problems that have to do with the solution o
the Laplace equation¹2p50 with appropriate boundary
conditions on moving, ramified boundaries. Among su
problems are dielectric breakdown@2#, flows in porous me-
dia ~with D’arcy’s law v52“p and“•v50) @3#, electro-
chemical deposition@4#, etc.

Numerical estimates of the fractal dimensionD of DLA
@5# turned out to converge extremely slowly with the numb
of particlesn of the cluster, leading even to speculations@6#
that asymptotically the clusters were plane filling~i.e., D
52 in two dimensions!. To date there are still no controlle
calculations of the fractal dimension of DLA. The aim of th
Rapid Communication is to close this gap for DLA in tw
dimensions. We propose a renormalization procedure
culminates with an integral equation whose solution de
mines the dimensionD of DLA.

To derive the wanted integral equation we use the con
mal theory that was developed recently@7–11# for fractal
growth patterns. In this theory one considers the confor
map from the exterior of the unit circle in the complex pla
to the exterior of the growing fractal cluster. At the basis
this approach lies the understanding that once a fractal ob
is well developed, it is extremely difficult to find a conform
map from a smooth region to its boundary, simply beca
the conformal map is terribly singular on the tips of a frac
shape. The derivative of the inverse map is the growth pr
ability for a random walker to hit the interface~known as the
‘‘harmonic measure’’! which has been shown to be a mul
fractal measure@12# characterized by infinitely many expo
nents @13,14#. Accordingly, in the present approach on
grows the cluster by iteratively constructing the conform
map starting from a smooth initial interface. Consid
PRE 621063-651X/2000/62~5!/5919~4!/$15.00
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F (n)(w) which conformally maps the exterior of the un
circle eiu in the mathematicalw plane onto the complemen
of the ~simply connected! cluster ofn particles in the physi-
cal z plane@7–11#. The unit circle is mapped onto the boun
ary of the cluster. The mapF (n)(w) is made from composi-
tions of elementary mapsfl,u ,

F (n)~w!5F (n21)@fln ,un
~w!#, ~1!

where the elementary mapfl,u transforms the unit circle to
a circle with a ‘‘bump’’ of linear sizeAl around the point
w5eiu. An example of a good elementary mapfl,u was
proposed in@7#, endowed with a parametera in the range
0,a,1, determining the shape of the bump. We emp
a51/2, which is consistent with semicircular bumps. A
cordingly, the mapF (n)(w) adds on a new bump to th
image of the unit circle underF (n21)(w). The bumps in the
z plane simulate the accreted particles in the physical sp
formulation of the growth process. Since we want to ha
fixed sizebumps in the physical space, say of fixed areal0,
we choose in thenth step

ln5
l0

uF (n21)8~eiun!u2
. ~2!

The recursive dynamics can be represented as iteration
the mapfln ,un

(w),

F (n)~w!5fl1 ,u1
+fl2 ,u2

+ . . . +fln ,un
~v!. ~3!

The difference between various growth models will manif
itself in the different itineraries$u1•••un% @10#. To grow a
DLA we have to choose random positionsun . This way we
accrete fixed size bumps in the physical plane according
the harmonic measure~which is transformed into a uniform
measure by the analytic inverse ofF (n)). The DLA cluster is
fully determined by the stochastic itinerary$uk%k51

n . In Fig.
1 we present a typical DLA cluster grown by this method
sizen5100 000.

This method affords us analytic power that is lacking
the original computer algorithm@1#; the conformal map
F (n)(w) is represented in terms of its Laurent expansion
R5919 ©2000 The American Physical Society
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F (n)~w!5F1
(n)w1F0

(n)1F21
(n)w211F22

(n)w221 . . . .
~4!

The recursion equations for the Laurent coefficients
F (n)(w) can be obtained analytically, and in particular o
shows that@7#

F1
(n)5)

k51

n

A11lk ~with the choicea51/2!. ~5!

The first Laurent coefficientF1
(n) has a distinguished role in

determining the fractal dimension of the cluster, being id
tical to the Laplace radius which is the radius of a charg
disk having the same field far away as the charged clu
@8#. Moreover, definingRn as the minimal radius of al
circles inz that contain then-cluster, one can prove that@15#

Rn<4F1
(n) . ~6!

Of course, for every realization$u i% i 51
n the first Laurent co-

efficient is a random number depending on$u i% i 51
n and on

l0. It is thus natural to consider the mean ofF1
(n) over all the

possible realization of growth:

^F1
(n)&~l0![E

0

2p

du1•••E
0

2p

dunF1
(n)~$u i% i 51

n ,l0!. ~7!

In light of Eq. ~6! one expects that for sufficiently larg
clusters

^F1
(n)&~l0!;Al0 n1/D, n→`. ~8!

But this is true only for very large values ofn. For arbitrary
values ofn we offer the following proposition, which is cen
tral to our developments:

Proposition: For l0 of O(1) ^F1
(n)&(l0) is a scaling func-

tion of the single variablex[Al0 (n1a)1/D, wheren takes
on integer valuesn51,2,3, . . . , anda is a weak function of
l0, taking on values of the order of unity.

The origin of the parametera is evident: it stems from the
fact that for varying values ofl0 the unit circle around
which we grow the bumps is contributing to the Lapla

FIG. 1. DLA cluster,n5100 000.
f
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radius, changing the effective value ofn. We will show,
however, that to very good approximationa can be taken as
constant.

We demonstrate the proposition by a direct calculation
^F1

(n)&(l0). In Fig. 2, panel a we shoŵF1
(n)&(l0) for ten

different values ofl0 as a function ofn. In panel b we show
the same data as a function of the scaling variablex using
a50.2, D51.71. The data collapse is evident.

We stress three points:~i! The scaling function appears t
exist for all values ofn starting fromn51. It is anonlinear
function of the scaling variable, with the attainment of t
linear regime ~8! not in sight. ~ii ! a was taken as a
l0-independent constant; even better data collapse coul
obtained with al0-dependenta, and we return to this issue
below. ~iii ! The attainment of data collapse requires a va
for D; we have usedD51.71 but close-by values would
have done equally well by changinga a bit. Thus, we canno
propose the data collapse as an accurate method of com
ing the fractal dimensionD. For this purpose we derive now
an integral equation from which botha andD can be com-
puted in a controlled fashion.

Having a scaling function in mind we think about a rea
space renormalization group procedure, in which we cha
the number of particles in the cluster and their size such a
keep the cluster invariant. Forn very large, when the radius
of gyration is linear inAl0 n1/D, we can change the size o
the particlesAl0 by a factor of 2, and their numbern by a
factor of 2D. In the asymptotic regime such a renormaliz
tion will leave Rn invariant. For small values ofn we make
use of the discovery that^F1

(n)&(l0) is a scaling function of
the single variablex5Al0(n1a)1/D. We demand that upon
renormalization the average Laplace radius remains inv
ant. In other words, the fixed point condition can be writt
as the following integral equation:

FIG. 2. Panel a: the mean^F1
(n)& as a function ofn for different

values ofl0. The data shown pertain to the ten values ofl0 from
0.6 ~below! to 1.5 ~above!. Panel b: the same objects plotted as
function of the scaling variablex with a50.2 andD51.71.
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E
0

2p

du1•••E
0

2p

dunF1
(n)~l0!

5E
0

2p

du1•••E
0

2p

du n̄F1
(n̄)~ l̄0!, ~9!

where for anyn̄.n the equation is satisfied by the uniqu
value of l̄0 that solves the equation

Al̄05Al0S n1a

n̄1a
D 1/D

. ~10!

The way to computeD is then obvious: one computes th
integral on the left-hand side~lhs! of Eq. ~9! for some value
of n, and then finds the unique value ofl̄0 for which the rhs
with n̄.n equals the lhs. Then

D52
ln~ n̄1a!2 ln~n1a!

ln l02 ln l̄0

. ~11!

One should stress that Eq.~9! is all explicit ~there is no
simulation or randomness left at this point! the integrand on
both sides is an explicit function of$u1 , . . . ,un% or
$u1 , . . . ,u n̄% through Eqs.~5! and ~2!. We note that this
method of calculation is fundamentally different from th
standard method of log-log plots of the radius of the clus
versusn @5,6#. These rely on the proportionality ofRn and
n1/D. Here we may usesmall values of nas we depend nei
ther on the asymptotic linearity of Eq.~8!, nor on self-
averaging.

Clearly the integral equation will be useful for an actu
determination ofD only if it converges to the fixed poin
quickly upon increasingn. Otherwise, the calculation of th
multidimensional integral will become very cumbersom
maybe even more time consuming than standard nume
simulations. In the rest of this paper we demonstrate that
calculation actually converges very quickly and present
determination ofD.

First we determine the value ofa. We usel̄051, and
solve Eq.~9! for the simplest casen51, n̄52, demanding

^F1
(2)&~ l̄051!5A2^A11l̄2&

5F1
(1)~l0!5A11l0,

~12!

~21a!1/D5~11a!1/DAl0. ~13!

Computing explicitly ~taking D51.71) we found

^A11l̄2&'1.241 from which followed a'0.146. To
bracket the calculations we have employed this value
gether witha50 anda51.

In solving Eq.~9! we chose invariablyn̄5n11, andl0
51. The results are shown in Fig. 3, in the form of the va
of D versus (n1a)21. Fitting the best quadratic curve to th
data with a50.146 we find that it extrapolates for (n
1a)21→0 to D51.7150 . . . . Obviously, the calculation
with a50 anda51 bracket this from above and from be
low. Nevertheless the best nonlinear fits to these data
r

l
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e
e
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e
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trapolate to very close values for (n1a)21→0 ~see Fig. 3!.
Taking all the data together we can present a final value
D51.71360.003. We cannot overstress the fact that th
results were obtained from solving Eq.~9! with n values
ranging fromn51 to n520. We believe that this represen
a major advance compared to traditional estimates of
dimension of DLA.

To improve the results even further, and to remove
curvature in the line ofD versus (n1a)21 we can endowa
with a weakl0 dependence. Using the function

a~l0!52.048 1124.080 71Al012.234 46l0 , ~14!

and using the appropriate value ofa(l0) in Eq. ~11! we
obtain solutions with essentially constantD for all values of
n.2. The values ofD computed are shown in Fig. 4 as
function of n. With this data we can state without going
the limit n→` that D51.71360.005. This result is invari-
ant with respect to changingn in Eq. ~9!. It can be computed
equally well from n53 and n̄54 as from n519 and n̄
520. We should of course stress at this point that the fu
tion a(l0) wasnot computed from first principles; we hop
that further theoretical progress will shed light on how
achievea priori determination of the functional forma(l0).

The most important questions that we need to addr
now are:~i! why the classical numerical estimates@5,6# of
the fractal dimension of DLA converge so slowly, where

FIG. 3. Estimated value of the fractal dimensionD computed
from the solution of the integral equation~9!. The three sets of
points pertain toa50 ~upper!, a50.146 ~middle!, and a51
~lower!. The lines are the best quadratic fits to the data. The
trapolated values at 1/(n1a)50 are 1.7158, 1.7150, and 1.711
respectively, leading to our final estimateD51.71360.003.

FIG. 4. Estimated value of the fractal dimensionD computed
from the solution of the integral equation~9!, using the function
a(l0) of Eq. ~14!. Without going to the limitn→` we can state
D51.71360.005.
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here we can get an excellent estimate ofD even withn of the
order of unity;~ii ! Is the collapse of the scaling data for sm
n exact or an excellent approximation. The answer to~i! is
that in standard numerical experiments the radius of gyra
of the grown cluster was plotted in log-log coordinat
against the number of particles, withD estimated from the
slope. Examining our scaling function̂F1&(x) ~see Fig. 2!
we note the slow crossover to linear behavior, which may
be fully achieved even for extremely high values ofn. In this
respect we understand that a reliable estimate ofD from
radius of gyration calculation requires inhuman effort, as w
indeed experienced by workers in the field@6#. In the present
e

ia,
n

t

s

formulation the appearance of theasymptotic Das a renor-
malization exponent already at early stages of the gro
allows a convergent calculation. The answer to~ii ! has to
await a first principle theory fora(l0).
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