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Diffusion limited aggregatiottDLA) is a model of fractal growth that had attained a paradigmatic status due
to its simplicity and its underlying role for a variety of pattern forming processes. We present a convergent
calculation of the fractal dimensioD of DLA based on a renormalization scheme for the first Laurent
coefficient of the conformal map from the unit circle to the expanding boundary of the fractal cluster. The
theory is applicable from very smal2—3 particley to asymptotically larger{—c) clusters. The computed
dimension isD=1.713+0.003.

PACS numbegps): 61.43.Hv

The model of diffusion limited aggregation was presentedd(™(w) which conformally maps the exterior of the unit
in 1981 by Witten and Sand¢l] as a computer algorithm. circle €'? in the mathematicalv plane onto the complement
The process begins with fixing one patrticle at the center obf the (simply connectetcluster ofn particles in the physi-
coordinates ind-dimensions, and follows the creation of a calzplane[7—-11]. The unit circle is mapped onto the bound-
cluster by releasing random walkers from infinity, allowing ary of the cluster. The ma@((w) is made from composi-
them to walk around until they hit any particle belonging totions of elementary mapg, ,
the cluster. The growing cluster appears to be a random frac- _
tal. The model has attracted enSPmous attention as an ex- P (w) =" 1)[¢)‘n’ﬁn(w)]’ @)

ample for the spontaneous creation of fractal objects in na- L
ture, and also as a paradigm for a family of relategWhere the elementary map, , transforms the unit circle to

“harmonic” problems that have to do with the solution of & Circle with a “bump” of linear sizey\ around the point

AT
the Laplace equatiorV?p=0 with appropriate boundary w=e". ,;\n ([a;(]amp:je ofg ggﬁd element?ry.mfjﬁya was
conditions on moving, ramified boundaries. Among suchProposed InL7], endowed with a parameterin the range

. : ; ~ 0<a<l, determining the shape of the bump. We employ
Sirgk()\liims[)é;?cdilcla;vtvr|c_bria%kd%vgg],vf.lov!sol)n[g]o rZ:JeSctrrT:f a=1/2, which is consistent with semicircular bumps. Ac-
chemical de oﬁitiorﬁ4]ve_tc P v= ’ cordingly, the mapd®(™(w) adds on a new bump to the

Numerica? estimate:s of. the fractal dimensibnof DLA image of the unt circle undeb™"(w). The bumps in the

d v slowlv with th b z plane simulate the accreted particles in the physical space
[5] turned out to converge extremely slowly with the number,mjation of the growth process. Since we want to have

of particlesn of the cluster, leading even to speculatiéf$  fiyaq sizebumps in the physical space, say of fixed axga
that asymptotically the clusters were plane filliige., D e choose in theith step

=2 in two dimensions To date there are still no controlled

calculations of the fractal dimension of DLA. The aim of this \o
Rapid Communication is to close this gap for DLA in two )\nzm. 2
dimensions. We propose a renormalization procedure that | (e"m)]

culminates with an integral equation whose solution deter- . . . .
mines the dimensio of DLA. The recursive dynamics can be represented as iterations of

To derive the wanted integral equation we use the conforthe mape,, 10n(W)'

mal theory that was developed recenflf—11] for fractal -

growth patterns. In this theory one considers the conformal (W)= by, 0,°Pn,,0,° - - 0D, 0, (@) 3
map from the exterior of the unit circle in the complex plane

to the exterior of the growing fractal cluster. At the basis of The difference between various growth models will manifest
this approach lies the understanding that once a fractal objetiself in the different itinerarieg 6, - - - 6,} [10]. To grow a

is well developed, it is extremely difficult to find a conformal DLA we have to choose random positiofis. This way we
map from a smooth region to its boundary, simply becaus@ccrete fixed size bumps in the physical plane according to
the conformal map is terribly singular on the tips of a fractalthe harmonic measur@vhich is transformed into a uniform
shape. The derivative of the inverse map is the growth probmeasure by the analytic inverse®f™). The DLA cluster is
ability for a random walker to hit the interfa¢known as the  fully determined by the stochastic itinerafg,}z— . In Fig.
“harmonic measure) which has been shown to be a multi- 1 we present a typical DLA cluster grown by this method to
fractal measur¢12] characterized by infinitely many expo- sizen=100 000.

nents [13,14. Accordingly, in the present approach one This method affords us analytic power that is lacking in
grows the cluster by iteratively constructing the conformalthe original computer algorithnjl]; the conformal map
map starting from a smooth initial interface. Considerd®("(w) is represented in terms of its Laurent expansion,
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FIG. 1. DLA cluster,n=100 000.

dM(w)=FPw+FM+FOw + FMw 2+
(4)

The recursion equations for the Laurent coefficients of
®M(w) can be obtained analytically, and in particular one

shows tha{7]
n
FW=]] Vi+x, (withthe choicea=1/2). (5)
k=1

The first Laurent coefficierE{"” has a distinguished role in

determining the fractal dimension of the cluster, being iden-
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FIG. 2. Panel a: the megir{") as a function of for different
values of\,. The data shown pertain to the ten values\gffrom
0.6 (below) to 1.5 (above. Panel b: the same objects plotted as a
function of the scaling variablg with «=0.2 andD=1.71.

radius, changing the effective value of We will show,
however, that to very good approximatiancan be taken as
constant.

We demonstrate the proposition by a direct calculation of

tical to the Laplace radius which is the radius of a chargeqF(ln)x)\o). In Fig. 2, panel a we shoWF{")(\o) for ten
disk having the same field far away as the charged clust€jitferent values oh  as a function of. In panel b we show

[8]. Moreover, definingR, as the minimal radius of all
circles inz that contain then-cluster, one can prove thgt5]

(6)

Of course, for every realizatiofy;}{_ , the first Laurent co-
efficient is a random number depending o}, and on
Xo. Itis thus natural to consider the meanfdf’ over all the
possible realization of growth:

21 21
<F§”’><xo>5fo d01~~-f0 do.F {61 ). (D)

In light of Eq. (6) one expects that for sufficiently large

clusters

(FIM(Ng)~ VAo NP, n—oe, (8
But this is true only for very large values of For arbitrary
values ofn we offer the following proposition, which is cen-
tral to our developments:

Proposition: For Ao of O(1) (F{M)(\,) is a scaling func-
tion of the single variable=\, (n+a)*P, wheren takes
on integer values=1,2,3 ..., anda is a weak function of
\g, taking on values of the order of unity.

The origin of the parameter is evident: it stems from the
fact that for varying values ol the unit circle around

the same data as a function of the scaling variabiesing
a=0.2,D=1.71. The data collapse is evident.

We stress three point§:) The scaling function appears to
exist for all values oh starting fromn=1. It is anonlinear
function of the scaling variable, with the attainment of the
linear regime (8) not in sight. (i) « was taken as a
No-independent constant; even better data collapse could be
obtained with a\g-dependenty, and we return to this issue
below. (iii) The attainment of data collapse requires a value
for D; we have used=1.71 but close-by values would
have done equally well by changirga bit. Thus, we cannot
propose the data collapse as an accurate method of comput-
ing the fractal dimensio®. For this purpose we derive now
an integral equation from which botla andD can be com-
puted in a controlled fashion.

Having a scaling function in mind we think about a real-
space renormalization group procedure, in which we change
the number of particles in the cluster and their size such as to
keep the cluster invariant. Forvery large, when the radius
of gyration is linear iny\, n*P, we can change the size of
the particles\\o by a factor of 2, and their numberby a
factor of 2. In the asymptotic regime such a renormaliza-
tion will leave R, invariant. For small values af we make
use of the discovery thafF{")(\,) is a scaling function of
the single variablex= \\o(n+ a)*P. We demand that upon
renormalization the average Laplace radius remains invari-
ant. In other words, the fixed point condition can be written

which we grow the bumps is contributing to the Laplaceas the following integral equation:
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where for anyﬁ>n the equation is satisfied by the unique

value of\g that solves the equation 0.1 0.2 0.3
/b 1/(n+o0)
n+a
Vo= ol = (10 . -
n+«a FIG. 3. Estimated value of the fractal dimensibncomputed

from the solution of the integral equatid®). The three sets of
The way to computd is then obvious: one computes the points pertain toa=0 (upped, a=0.146 (middle), and a=1
integral on the left-hand sidghs) of Eq. (9) for some value (lower). The lines are the best quadratic fits to the data. The ex-

With n>n equals the Ihs. Then respectively, leading to our final estimdde=1.713+0.003.

trapolate to very close values fon¢ a) "1—0 (see Fig. 3.

— (11)  Taking all the data together we can present a final value of
InXo—InXq D=1.713-0.003. We cannot overstress the fact that these
results were obtained from solving E®). with n values
ranging fromn=1 to n=20. We believe that this represents
a major advance compared to traditional estimates of the
dimension of DLA.

To improve the results even further, and to remove the
curvature in the line oD versus (+ )~ we can endowr
With a weak\ o dependence. Using the function

2|n(F+ a)—In(n+a)

One should stress that EEQ) is all explicit (there is no
simulation or randomness left at this poithe integrand on
both sides is an explicit function of#,,...,6,} or
{64, ...,0,} through Egs.(5) and (2). We note that this
method of calculation is fundamentally different from the
standard method of log-log plots of the radius of the cluste
versusn [5,6]. These rely on the proportionality &, and
n*®. Here we may usemall values of ras we depend nei-
ther on the asymptotic linearity of Ed8), nor on self-
averaging. ) ) )
Clearly the integral equation will be useful for an actual@nd using the appropriate value af\o) in Eq. (11) we
determination ofD only if it converges to the fixed point ©btain solutions with essentially constabtfor all values of
quickly upon increasing. Otherwise, the calculation of the N>2. The values oD computed are shown in Fig. 4 as a
multidimensional integral will become very cumbersome,function of n. With this data we can state without going to
maybe even more time consuming than standard numeric#fne limit n—o thatD=1.713+0.005. This result is invari-
simulations. In the rest of this paper we demonstrate that thant with respect to changingin Eqg. (9). It can be computed
calculation actually converges very quickly and present theequally well fromn=3 andn=4 as fromn=19 andn
determination oD. =20. We should of course stress at this point that the func-
First we determine the value af. We useho=1, and tion a(\o) wasnot computed from first principles; we hope

solve Eq.(9) for the simplest casa=1, n=2. demanding that_ further_th_eoretica! progress will she_d light on how to
achievea priori determination of the functional forme(\g).

a(Ng)=2.048 11-4.080 7TH/\o+2.23446.,, (14)

EF@V(Nu=1)= 2 /1+y The mqst important qqestions thgt we r_1eed to address
(FI00=1) \/_< 2) now are:(i) why the classical numerical estimatgs6] of
—FP(g)= VIt g the fractal dimension of DLA converge so slowly, whereas
(12
1.8
(2+a)™P=(1+ a)*P . (13
1.7 [ ¢ e es s ®u 0o, b
Computing explicitly (taking D=1.71) we found
(V1+X,)=~1.241 from which followed «~0.146. To 16 1
bracket the calculations we have employed this value to- 15 ¢

gether witha=0 anda=1.

In solving Eq.(9) we chose invariably=n+1, and\
=1. The results are shown in Fig. 3, in the form of the value

5 10 15 20

of D versus (+ «) L. Fitting the best quadratic curve to the n
datai\iwth a=0.146 we find that it extrapolates fom ( FIG. 4. Estimated value of the fractal dimensiBncomputed
+a@) "—0 to D=1.719 ... . Obviously, the calculation from the solution of the integral equatid®), using the function

with =0 anda=1 bracket this from above and from be- «(\,) of Eq. (14). Without going to the limitn— we can state
low. Nevertheless the best nonlinear fits to these data ex3=1.713+0.005.
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here we can get an excellent estimat®©aéven withn of the  formulation the appearance of tlasymptotic Das a renor-
order of unity;(ii) Is the collapse of the scaling data for small malization exponent already at early stages of the growth
n exact or an excellent approximation. The answefilds  allows a convergent calculation. The answer(iip has to
that in standard numerical experiments the radius of gyratioawait a first principle theory for(\o).

of the grown cluster was plotted in log-log coordinates

against the number of particles, with estimated from the It is a pleasure to acknowledge useful discussions with
slope. Examining our scaling functigifF,)(x) (see Fig. 2  Ayse Erzan, Mitchell Feigenbaum, and George Hentschel.
we note the slow crossover to linear behavior, which may nofrhis work has been supported in part by the European Com-
be fully achieved even for extremely high valuesiofn this ~ mission under the TMR program, The Petroleum Research
respect we understand that a reliable estimatédirom Fund, The Minerva Foundation, Heidelberg, Germany and
radius of gyration calculation requires inhuman effort, as washe Naftali and Anna Backenroth-Bronicki Fund for Re-
indeed experienced by workers in the fig&d. In the present search in Chaos and Complexity.
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